Micropatterned silicone elastomer substrates for high resolution analysis of cellular force patterns.

نویسندگان

  • Claudia M Cesa
  • Norbert Kirchgessner
  • Dirk Mayer
  • Ulrich S Schwarz
  • Bernd Hoffmann
  • Rudolf Merkel
چکیده

Cellular forces are closely related to many physiological processes, including cell migration, growth, division, and differentiation. Here, we describe newly developed techniques to measure these forces with high spatial resolution. Our approach is based on ultrasoft silicone elastomer films with a regular microstructure molded into the surface. Mechanical forces applied by living cells to such films result in elastomer deformation which can be quantified by video microscopy and digital image processing. From this deformation field forces can be calculated. Here we give detailed accounts of the following issues: (1) the preparation of silicon wafers as molds for the microstructures, (2) the fabrication of microstructured elastomer substrates, (3) the in-depth characterization of the mechanical properties of these elastomers, (4) the image processing algorithms for the extraction of cellular deformation fields, and (5) the generalized first moment tensor as a robust mathematical tool to characterize whole cell activity. We present prototype experiments on living myocytes as well as on cardiac fibroblasts and discuss the characteristics and performance of our force measurement technique.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High-Resolution, Large-Area Fabrication of Compliant Electrodes via Laser Ablation for Robust, Stretchable Dielectric Elastomer Actuators and Sensors.

A key element in stretchable actuators, sensors, and systems based on elastomer materials are compliant electrodes. While there exist many methodologies for fabricating electrodes on dielectric elastomers, very few succeed in achieving high-resolution patterning over large areas. We present a novel approach for the production of mechanically robust, high-resolution compliant electrodes for stre...

متن کامل

Dynamics of cell shape and forces on micropatterned substrates predicted by a cellular Potts model.

Micropatterned substrates are often used to standardize cell experiments and to quantitatively study the relation between cell shape and function. Moreover, they are increasingly used in combination with traction force microscopy on soft elastic substrates. To predict the dynamics and steady states of cell shape and forces without any a priori knowledge of how the cell will spread on a given mi...

متن کامل

Friction enhancement via micro-patterned wet elastomer adhesives on small intestinal surfaces.

A micro-pillar-based silicone rubber adhesive coated with a thin silicone oil layer is investigated in this paper for developing friction-based clamping mechanisms for robotic endoscopic microcapsules. These adhesives are shown to enhance the frictional force between the capsule and the intestinal wall by a factor of about seven over a non-patterned flat elastomer material. In this study, tests...

متن کامل

Micropatterned surfaces for reducing the risk of catheter-associated urinary tract infection: an in vitro study on the effect of sharklet micropatterned surfaces to inhibit bacterial colonization and migration of uropathogenic Escherichia coli.

BACKGROUND AND PURPOSE Catheter-associated urinary tract infection (CAUTI) is the most common device-associated infection and can result in serious medical consequences. We studied the efficacy of a novel microscopic physical surface modification (Sharklet) for preventing bacterial colonization and migration of uropathogenic Escherichia coli on silicone elastomer. MATERIALS AND METHODS In vit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Review of scientific instruments

دوره 78 3  شماره 

صفحات  -

تاریخ انتشار 2007